Midterm Exam - Optimization) B. Math III

19 February, 2025

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 100 (total = 110).
- (iii) You are not allowed to consult any notes or external sources for the exam.

Name: _____

Roll Number: _____

1. (15 points) Find the Perron root and the Perron vector for

$$\mathbf{A} = \left(\begin{array}{cc} 1 - \alpha & \beta \\ \alpha & 1 - \beta \end{array}\right)$$

where $\alpha + \beta = 1$ with $\alpha, \beta > 0$.

2. (15 points) The support function, $S_K : S^{n-1} \to (-\infty, \infty]$, of a closed convex set $K \subseteq \mathbb{R}^n$ is defined as

$$S_K(\vec{y}) = \sup\{\langle \vec{y}, \vec{x} \rangle : \vec{x} \in K\} \le \infty,$$

for every unit vector \vec{y} in \mathbb{R}^n . Suppose that K and L are closed convex sets in \mathbb{R}^n . Show that K = L if and only if $S_K = S_L$. Total for Question 2: 15

3. A real (n, n)-matrix $A = ((\alpha_{ij}))$ is called *doubly stochastic* if $\alpha_{ij} \ge 0$ and $\sum_{k=1}^{n} \alpha_{kj} = \sum_{k=1}^{n} \alpha_{ik} = 1$ for $i, j \in \{1, \ldots, n\}$. A doubly stochastic matrix with components in $\{0, 1\}$ is called a permutation matrix.

Total for Question 1: 15

- (a) (5 points) Prove that the set $K \subset \mathbb{R}^{n^2}$ of doubly stochastic matrices is compact and convex.
- (b) (10 points) Find, with justification, all extreme points of K.

Total for Question 3: 15

4. (15 points) Consider a set \mathcal{P} described by linear inequality constraints, that is,

$$\mathcal{P} := \{ \vec{x} \in \mathbb{R}^n \mid \vec{a_i}^T \vec{x} \le b_i, i = 1, \dots, m \}.$$

A ball with center \vec{y} and radius r is defined as the set of all points within (Euclidean) distance r from \vec{y} . We are interested in finding a ball with the largest possible radius, which is entirely contained within the set \mathcal{P} . Provide, with justification, a linear programming formulation of this problem.

Total for Question 4: 15

- 5. Let **c** be a vector in \mathbb{R}^n . Consider the problem of minimizing $\mathbf{c}^T \mathbf{x}$ where \mathbf{x} varies over a polyhedron $\mathcal{P} \subseteq \mathbb{R}^n$.
 - (a) (10 points) Prove that $\mathbf{x} \in \mathcal{P}$ is optimal if and only if $\mathbf{c}^T \mathbf{d}$ for every feasible direction \mathbf{d} at \mathbf{x} .
 - (b) (10 points) Prove that $\mathbf{x} \in \mathcal{P}$ is the unique optimal solution if and only if $\mathbf{c}^T \mathbf{d} > 0$ for every non-zero feasible direction \mathbf{d} at \mathbf{x} .

Total for Question 5: 20

6. (20 points) Consider a standard form LP problem, under the usual assumption that the rows of **A** are linearly independent. Let ϵ be a scalar and define

$$\mathbf{b}(\epsilon) = \mathbf{b} + \begin{bmatrix} \epsilon \\ \epsilon^2 \\ \vdots \\ \epsilon^m \end{bmatrix}$$

For every $\epsilon > 0$, we define the ϵ -perturbed problem to be the linear programming problem obtained by replacing b with $b(\epsilon)$. Show that there exists some $\epsilon^* > 0$ such that all basic solutions to the ϵ -perturbed problem are nondegenerate, for $0 < \epsilon < \epsilon^*$.

Total for Question 6: 20

7. (10 points) Consider the problem

minimize
$$-2x_1 - x_2$$

subject to $x_1 - x_2 \le 2$
 $x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0.$

Convert the problem into standard form and construct a basic feasible solution at which $(x_1, x_2) = (0, 0).$

Total for Question 7: 10